ETH Zürich
20.01.2022, 13:35 Uhr
Wie Roboter wandern lernen
ETH-Forschende um Marco Hutter entwickeln ein neues Steuerungssystem, mit dem sich der Laufroboter ANYmal auch in schwierigem Gelände bewegt. Dank maschinellem Lernen kann der Roboter erstmals seine visuelle Umweltwahrnehmung mit seinem Tastsinn kombinieren.
Der Laufroboter ANYmal auf dem Weg zum Gipfel des 1098 Meter hohen Etzel bei Einsiedeln
(Quelle: Takahiro Miki)
Steile Passagen auf rutschigem Untergrund, hohe Stufen, Geröll und Waldwege mit Wurzeln: Der Weg auf den 1098 Meter hohen Etzel am südlichen Ende des Zürichsees ist gepflastert mit zahlreichen Hindernissen. Doch ANYmal, der vierbeinige Laufroboter des Robotic Systems Lab der ETH Zürich, überwindet die 120 Höhenmeter mühelos und steht nach 31-minütigem Aufstieg auf dem Gipfel. Vier Minuten schneller, als für menschliche Wanderer vorgesehen. Und das ohne Sturz oder Fehler.
Möglich wird dies durch eine neue Steuerungstechnologie, die Forschende der ETH Zürich um Robotik-Professor Marco Hutter kürzlich in der Fachzeitschrift Science Robotics präsentierten. «Der Roboter hat gelernt, die visuelle Wahrnehmung der Umwelt mit der auf direktem Beinkontakt beruhenden Tastwahrnehmung zu kombinieren. Er kann dadurch unwegsames Gelände schneller, effizienter und vor allem robuster bewältigen», sagt Hutter. In Zukunft kann ANYmal überall dort eingesetzt werden, wo es für Menschen zu gefährlich oder für andere Roboter zu unwegsam ist.
Die Umwelt richtig wahrnehmen
Um sich in schwierigem Gelände zu bewegen, kombinieren Menschen und Tiere ganz automatisch die visuelle Wahrnehmung ihrer Umwelt mit dem Tastsinn ihrer Beine und Hände. So können sie problemlos mit rutschigem oder nachgiebigem Untergrund umgehen und sich auch bei schlechten Sichtverhältnissen zuverlässig fortbewegen. Bis anhin waren Laufroboter nur bedingt dazu in der Lage.
«Der Grund dafür ist, dass die von Laser-Sensoren und Kameras aufgezeichneten Informationen zur unmittelbaren Umgebung oft unvollständig und mehrdeutig sind», erklärt Takahiro Miki, Doktorand in Hutters Gruppe und Erstautor der Studie. So erscheinen etwa hohes Gras, seichte Pfützen oder Schnee als unüberwindbare Hindernisse oder sind teilweise unsichtbar, obwohl der Roboter eigentlich darüber hinweglaufen könnte. Zudem kann der Blick des Roboters im Einsatz durch schwierige Lichtverhältnisse, Staub oder Nebel gestört werden.
«Roboter wie ANYmal müssen daher selbstständig entscheiden können, wann sie Bildern ihrer Umwelt vertrauen und zügig voranschreiten und wann sie sich besser vorsichtig und mit kleinen Schritten vorantasten», so Miki. «Darin liegt die grosse Herausforderung.»
Autor(in)
Christoph
Elhardt, ETH-News