Forschung an ETH und Inselspital
10.03.2020, 14:39 Uhr
Mit Machine Learning Kreislaufversagen vorhersagen
Forschende der ETH Zürich und des Inselspitals Bern haben eine Methode entwickelt, mit der Kreislaufversagen von Patientinnen und Patienten auf der Intensivstation vorhergesagt werden kann. Zugrunde liegt die Auswertung von Patientendaten durch maschinelles Lernen.
Patient auf der Intensivstation: Die vielen anfallenden Vitaldaten ermöglichen eine Prognose von Kreislaufversagen
(Quelle: pd)
Patientinnen und Patienten auf der Intensivstation eines Spitals stehen unter genauer Beobachtung: Vitalwerte wie Puls, Blutdruck und Blutsauerstoffsättigung werden laufend gemessen. So haben die Ärztinnen und Pfleger eine Fülle von Daten zur Beurteilung des Gesundheitszustands der Patienten zur Verfügung. Dennoch ist es nicht einfach, aus diesen Informationen Prognosen zur weiteren Entwicklung des Zustands abzuleiten oder lebensbedrohliche Veränderungen weit voraus zu erkennen.
Forschende der ETH Zürich und des Inselspitals Bern haben nun gemäss einer gemeinsamen Medienmitteilung eine Methode entwickelt, welche die verschiedenen Vitalwerte sowie weitere medizinisch relevante Informationen über eine Patientin oder einen Patienten miteinander kombiniert. Dadurch kann ein kritisches Kreislaufversagen mehrere Stunden vor dem Eintreten vorausgesagt werden. Ziel ist es, in Zukunft mit der Methode die Vitalwerte im Spital in Echtzeit auszuwerten und das behandelnde Personal vorzuwarnen. Dieses kann somit frühzeitig geeignete Massnahmen einleiten.
Umfangreicher Datensatz
Die Entwicklung dieses Ansatzes ermöglichte ein umfangreicher Datensatz der Universitätsklinik für Intensivmedizin des Inselspitals. Diese begann 2005 als erste grosse Intensivstation in der Schweiz, detaillierte und zeitlich hochaufgelöste Daten von Intensivpatientinnen und -patienten in digitaler Form zu speichern. Für die Studie verwendeten die Forschenden Daten von 36'000 Aufenthalten auf der Intensivstation in anonymisierter Form und ausschliesslich von Patientinnen und Patienten, welche damit einverstanden waren, dass diese Daten für Forschungszwecke verwendet werden.
Auf Initiative von Tobias Merz, Forschungsmitarbeiter, ehemals Leitender Arzt in der Intensivmedizin am Inselspital Bern und heute am Auckland City Hospital tätig, analysierten Forschende um die ETH-Professoren Gunnar Rätsch und Karsten Borgwardt diese Daten mit Methoden des maschinellen Lernens. «Die so entwickelten Algorithmen und Modelle konnten im genutzten Datensatz 90 Prozent aller Kreislaufversagen vorhersagen. In 82 Prozent aller Fälle erfolgte die Vorhersage mindestens zwei Stunden im Voraus, womit den Ärzten Zeit für eine Intervention geblieben wäre», sagt Gunnar Rätsch, Professor für Biomedizininformatik an der ETH Zürich.
Autor(in)
pd/
jst