6G soll die Versprechen von 5G einlösen
Terahertz-Wellen
Eine Herausforderung bei der Forschung rund um 6G sind die hohen Frequenzbereiche, die später einmal genutzt werden sollen. So arbeiten die Forscher an der Nutzung von Frequenzen jenseits von 100 GHz, der damit einhergehenden Weiterentwicklung der Halbleitertechnologie sowie der Miniaturisierung und Integration von Antennen und Gehäuse.
Bis zum Standard LTE/4G spielt sich die gesamte Mobilkommunikation im Bereich unter 6 GHz ab. 5G nutzt 26 GHz, 28 GHz und 39 GHz, also erstmals das Spektrum oberhalb von 6 GHz.
Mit 6G plant man die Nutzung des Terahertz-Bereichs (THz). Voraussichtlich kommt das D-Band im Bereich von 0,11 bis 0,17 THz zum Einsatz. Darüber hinaus könnte man laut Fraunhofer IZM auch Visible Light Communication (VLC) verwenden, einen optischen Kommunikationsansatz für die Nahbereichskommunikation, bei dem sichtbares Licht zwischen etwa 400 und 800 THz genutzt wird.
Bislang gibt es aber noch keine vollständigen Lösungen für einen Funk im Terahertz-Bereich. Die Forschung befasst sich unter anderem damit, die enorme Freiraumdämpfung zu überwinden, also die Reduzierung der Leistung bei der Ausbreitung der elektromagnetischen Wellen.
So verhalten sich Terahertz-Wellen ähnlich wie Licht und durchdringen so gut wie keine Mauern. Da die Wellen nicht weit reichen, kann bereits ein Baum die Übertragung stören. Das gilt auch für schlechtes Wetter wie Regen oder Nebel. Eine Lösung können Mehrantennen-Architekturen mit Hunderten Antennen pro Mobilfunk-Basisstation sein, sogenannte MIMO-Architekturen (Multiple Input Multiple Output).
Terahertz-Wellen liegen zwischen dem Infrarot- und Mi-krowellenbereich. Entsprechende Empfänger sind noch vergleichsweise komplex und damit teuer. Erste Lösungsansätze für den Mobilfunk gibt es aber bereits: Forscher am Karlsruher Institut für Technologie (KIT) haben in Zusammenarbeit mit dem US-amerikanischen Diodenhersteller Virginia Diodes (VDI) einen besonders einfachen und kostengünstig herzustellenden Empfänger für Terahertz-Signale entworfen. Dabei handelt es sich um eine sogenannte Schottky-Diode, die sich durch hohe Geschwindigkeit auszeichnet. Mit dem neuen Empfänger erreichten die Forscher über eine Entfernung von 110 Metern und eine Frequenz von 0,3 THz eine Datenübertragungsrate von 115 GBit/s. Nach Angaben des KIT ist das die höchste Datenrate, die bislang mit drahtloser Terahertz-Übertragung über mehr als hundert Meter demonstriert wurde.