Festkörperbatterien
30.09.2020, 14:08 Uhr
Dünnschicht-Keramik für Minibatterien
Empa-Forscher sind dabei, einen festen Elektrolyten, dem Leitmedium für künftige Festkörperbatterien, zu entwickeln. Und zwar sollen ultradünne Schichten einer speziellen Keramik die Produktion von Festkörperbatterien in naher Zukunft möglich machen.
Empa-Doktorand Jordi Sastre forscht im Empa-Labor an Dünnschicht-Materialien für die Batterien der Zukunft.
(Quelle: Empa)
Lithium-Ionen-Akkus können aufgrund der leicht brennbaren Flüssigkeit in ihrem Innern ein Risiko bergen. Diese Elektrolytflüssigkeit könnte allerdings in Zukunft durch einen unbrennbaren und zugleich hitzebeständigen Festkörper ersetzt werden. Neben der verbesserten Sicherheit wären auch die höhere Leistungsfähigkeit und eine längere Lebensdauer wesentliche Vorteile solcher Batterien.
Das Forschungsteam um Yaroslav Romanyuk an der Empa fokussiert auf Dünnschichttechnologien für die Entwicklung dieser neuen Festkörperbatterien. Der Elektrolyt in solch einer Batterie muss verschiedene Bedingungen erfüllen: Er muss eine sehr gute Leitfähigkeit für Lithiumionen aufweisen und zugleich industriell möglichst günstig herstellbar sein.
Vom Brocken zur ultradünnen Schicht
Die Keramikverbindung LI7La3Zr2O12 (oder kurz LLZO) bringt hierfür die passenden Eigenschaften mit und stand im Fokus des Forschungsprojekts von Jordi Sastre, Doktorand an der Empa. Diese Keramik wird bislang zu Forschungszwecken in Form von sogenannten Pellets hergestellt, deren Grösse auf einige Zentimeter im Durchmesser limitiert ist. Für den Einsatz in Batterien müssen diese Pellets zunächst aufwändig poliert werden – ein zeitraubender Prozess, der mit hohen Materialverlusten einhergeht. Diese Methode ist also für eine industrielle Fertigung unbrauchbar.
Eine dünne LLZO-Schicht wäre die Lösung und böte zudem den Vorteil, dass die Lithium-Ionen schneller durch die Elektrolytschicht fliessen können – und damit die Leistung der Batterie steigt. Mit Hilfe einer Methode namens Magnetron-Sputtering gelang es Sastre nun, die LLZO-Keramik in Form eines ultradünnen Films herzustellen. Die Dicke dieses Films bewegt sich im Bereich von 500 Nanometern. Zum Vergleich: Der Durchmesser eines menschlichen Haars liegt in einem Bereich zwischen 40'000 und 100'000 Nanometern, es ist also rund 100-mal dicker.
Autor(in)
pd/
jst