Vordenker des aktiven maschinellen Lernens

Das Dilemma zwischen alten und neuen Daten

Ganz trivial ist die selbständige Informationsgewinnung allerdings nicht: Um seine Aufgabe optimal zu erfüllen, muss der lernende Agent eine gute Mischung finden aus bereits vorhandenen Daten sowie aus Daten, die er zusätzlich erwerben muss.
Die Forschung spricht in diesem Zusammenhang vom «Exploration-​Exploitation-Dilemma»: wenn der lernende Agent nämlich selbständig entscheidet, welche Experimente er durchführt, um zusätzliche Daten zu gewinnen, dann beeinflussen seine Entscheidungen auch, welche Daten er beim Lernen zur Verfügung hat und welche nicht.
Eine der wegweisenden Leistungen Andreas Krauses ist es, dass er das erste mathematische Lernverfahren entwickelte, für das man, ausgehend von gewissen Annahmen, beweisen kann, dass es auch in komplexen Anwendungen das «Exploration-​Exploitation-Dilemma» effektiv löst. Mathematisch gesprochen handelt es sich dabei um eine Spielart der bayesschen Optimierung, die auch dem Lernen der Drohnen, die nicht abstürzen sollen, zugrundliegt und unter bestimmten Voraussetzungen gewisse formale Sicherheitsgarantien ermöglicht.

Pionierhafter Forscher und Lehrer mit Leib und Seele

Tatsächlich ist Andreas Krauses Forschung sehr mathematisch geprägt: Damit aktive Lernverfahren zum Beispiel nützliche Daten so effizient wie möglich gewinnen, werden ganz bestimmte, «submodulare» Funktionen gebraucht. Heute gilt Andreas Krause als Pionier, der die submodulare Optimierung in das maschinelle Lernen einführte. Die Erkenntnisse aus einer sehr einflussreichen Publikation von Andreas Krause aus der Zeit in den USA fanden sogar praktische Anwendung in Wasserverteilungsnetzen: Dabei ging es um die Frage, wo man Sensoren am besten platziert, sodass sich die Wasserqualität optimal messen lässt.
Andreas Krause ist nicht nur ein scharfsichtiger Denker, wenn es um mathematischen Grundlagen des maschinellen Lernens geht, sondern auch einer, der die möglichen Auswirkungen dieser Technologien auf Wirtschaft und Gesellschaft reflektiert. Ihm ist es ein Anliegen, dass sowohl die Algorithmen oder Berechnungsregeln, die den Lernverfahren zugrundliegen, zuverlässig, erklärbar und nachvollziehbar sind, als auch, dass die Ergebnisse, Entscheidungen oder Empfehlungen für die Menschen, die sie je nachdem betreffen, fair und vertrauenswürdig sind.
Mit dieser Überzeugung widmet sich Andreas Krause der Ausbildung. Es liegt ihm am Herzen, den künftigen KI-​Expertinnen und Experten sowohl solide Grundlagen in Mathematik und Informatik zu vermitteln als auch einen Sinn für einen verantwortungsvollen Umgang mit diesen Technologien. Von diesem Engagement zeugen die «Goldene Eule», mit dem ihn die ETH-​Studierenden 2012 für seine Lehre ehrten, als auch die über tausend Studierenden, die seine Vorlesung «Introduction to Machine Learning» besuchen. Ebenso war er federführend am Aufbau des Masterprogramms Data Science und des DAS Data Science beteiligt, und im ETH AI Center achtet er darauf, dass verstärkt unternehmerische Aspekte in die Ausbildung einfliessen, damit vermehrt Spin-​offs die erworbenen KI-​Kompetenzen in die Praxis weitertragen.
Hinweis: Dieser Artikel ist zuerst bei «ETH-News» erschienen.



Das könnte Sie auch interessieren