Optische Verdrahtung für grosse Quantencomputer
Logikgatter mit hoher Wiedergabetreue
In einem herkömmlichen Computerchip werden mit Logikgattern logische Operationen wie beispielsweise AND oder NOT ausgeführt. Will man einen Quantencomputer bauen, so muss dieser in der Lage sein, solche logischen Operationen an den Qubits auszuführen. Das Problem dabei: Quanten-Logikgatter, die auf zwei oder mehr Qubits wirken, sind ganz besonders empfindlich gegenüber Störungen. Denn sie erschaffen fragile quantenmechanische Zustände, auch als Verschränkungszustände bekannt, bei denen sich zwei Ionen gleichzeitig in einer Überlagerung befinden.
Bei einer solchen Überlagerung beeinflusst eine Messung an einem der Ionen das Messergebnis am anderen Ion, ohne dass die beiden in direktem Kontakt stehen. Wie gut die Herstellung dieser Überlagerungszustände funktioniert – wie gut also die Logikgatter sind –, drückt man anhand der so genannten Wiedergabetreue aus. «Mit dem neuen Chip konnten wir Logikgatter mit zwei Qubits ausführen und mit ihnen Verschränkungszustände mit einer Wiedergabetreue herstellen, wie sie bisher nur in den allerbesten konventionellen Experimenten erreicht wurde», sagt Maciej Malinowski, der als Doktorand ebenfalls am Experiment beteiligt war.
Damit haben die Forschenden gezeigt, dass ihr neuer Ansatz für künftige Ionenfallen-Quantenrechner interessant sein wird, da er nicht nur äusserst stabil ist, sondern eben auch skalierbar. Derzeit untersuchen sie verschiedene Chips, mit denen bis zu zehn Qubits gleichzeitig kontrolliert werden sollen. Ausserdem arbeiten sie an neuen Designs für schnelle und präzise Quantenoperationen, die durch die optische Verdrahtung möglich werden.
Hinweis: Dieser Artikel stammt ursprünglich von «ETH-News».
Autor(in)
Oliver
Morsch, ETH News