Einstellbare Quantenfallen für Exzitonen
Quantisierung der Exzitonen-Bewegung
«Dieses elektrische Feld, das sich über eine kurze Entfernung stark ändert, kann die Exzitonen im Material sehr effektiv einfangen», erklärt Deepankur Thureja, Doktorand und Erstautor der Studie, der die Experimente gemeinsam mit Murthy ausgeführt hat. Die Exzitonen sind zwar elektrisch neutral, können aber durch elektrische Felder polarisiert werden. Das bedeutet, dass Elektron und Loch des Exzitons etwas weiter auseinandergezogen werden. Dadurch entsteht ein elektrisches Dipolfeld, das mit dem äusseren Feld wechselwirkt und so eine Kraft auf das Exziton ausübt.
Um experimentell nachzuweisen, dass dieses Prinzip tatsächlich funktioniert, liessen die Forschenden Laserlicht verschiedener Wellenlängen auf das Material fallen und massen jeweils die Lichtreflexion. Dabei sahen sie eine Reihe von Resonanzen, also Wellenlängen, bei denen das Licht stärker als erwartet reflektiert wurde. Diese Resonanzen konnten zudem durch Änderung der Spannung, die an die Elektroden angelegt wurde, eingestellt werden. «Das war für uns ein eindeutiges Zeichen, dass die elektrischen Felder eine Falle für die Exzitonen erzeugen und dass die Bewegung der Exzitonen darin quantisiert ist», sagt Thureja. Quantisiert bedeutet dabei, dass die Exzitonen nur ganz bestimmte Energiezustände annehmen können, wie zum Beispiel auch Elektronen in einem Atom. Aus den Positionen der Resonanzen konnten Imamoğlu und seine Mitarbeiter schliessen, dass die von den elektrischen Feldern erzeugte Exzitonen-Falle weniger als zehn Nanometer gross war.
Anwendungen in Quanteninformationsverarbeitung
Sowohl für praktische Anwendungen als auch für grundlegende Fragen sind solche stark gefangenen Exzitonen äusserst wichtig, sagt Murthy: «Elektrisch steuerbare Exzitonen-Fallen waren bislang ein fehlendes Glied in der Kette.» Nun ist es den Physikern zum Beispiel möglich, viele solcher gefangener Exzitonen aneinander zu reihen und sie so zu justieren, dass sie Photonen mit exakt den gleichen Eigenschaften aussenden. «Damit könnte man dann identische Einzelphoton-Quellen für die Quanteninformationsverarbeitung herstellen», erklärt Murthy. Und Imamoğlu fügt hinzu: «Auch für die Grundlagenforschung eröffnen diese Fallen neue Perspektiven. Sie werden es uns unter anderem ermöglichen, Nicht-Gleichgewichts-Zustände von stark wechselwirkenden Exzitonen zu untersuchen.»
Dieser Beitrag ist zunächst auf ETH News erschienen.
Autor(in)
Oliver
Morsch, ETH News