Künstliche Intelligenz versteht den Klang gesunder Maschinen
Auf «gesunde» Geräusche fokussiert
In realen industriellen Anwendungen lassen sich meist nämlich gar nicht so viele aussagekräftige Geräuschbeispiele von defekten Maschinen sammeln, da Defekte nur selten auftreten. Daher ist es auch nicht gut möglich, dem Algorithmus beizubringen, wie die Geräuschdaten von Fehlern klingen und wie sie sich von den gesunden Geräuschen unterscheiden. Die ETH-Forschenden trainierten die Algorithmen deshalb so, dass der maschinelle Lernalgorithmus lernte, wie eine Maschine normalerweise klingt, wenn sie einwandfrei läuft, und dann erkennt, wenn ein Geräusch vom Normalfall abweicht.
Dabei verwendeten sie eine Vielzahl von Geräuschdaten von Pumpen, Ventilatoren, Ventilen und Gleitschienen und wählten einen Ansatz des «unüberwachten Lernens», bei dem nicht sie einem Algorithmus «sagten», was er lernen soll, sondern der Computer lernte ohne Anleitung und selbstständig die relevanten Muster. Auf diese Weise befähigten Olga Fink und ihr Team das Lernverfahren, verwandte Geräusche innerhalb eines bestimmten Maschinentyps zu erkennen und auf dieser Grundlage zwischen bestimmten Fehlertypen zu unterscheiden.
Selbst wenn den Forschenden ein Datensatz mit Geräuschdaten von Fehlern zur Verfügung gestanden hätte, und sie dadurch in der Lage gewesen wären, ihre Algorithmen sowohl mit gesunden als auch mit defekten Bespielen zu trainieren, hätten sie nie sicher sein können, dass eine solcherlei gekennzeichnete Datensammlung tatsächlich alle gesunden und fehlerhaften Varianten enthielte. Ihr Sample wäre womöglich unvollständig gewesen und ihr Lernverfahren hätte je nachdem wichtige Fehlergeräusche nicht erkannt. Zudem kann derselbe Maschinentyp – je nach Nutzungsintensität oder Standortklima – sehr verschiedene Geräusche erzeugen, sodass mitunter selbst technisch fast identische Defekte je nach Maschine sehr unterschiedlich klingen.
Lernen von Vogelstimmen
Der Algorithmus lässt sich beileibe nicht nur auf die Geräusche von Maschinen anwenden. Die Forschenden testeten ihre Algorithmen auch zur Unterscheidung zwischen verschiedenen Vogelstimmen. Dabei verwendeten sie Aufnahmen von Vogelliebhabern. Die Algorithmen mussten lernen, verschiedene Vogelstimmen einer bestimmten Vogelart zu unterscheiden – und zwar so, dass die Art des verwendeten Mikrofones keine Rolle spielte: «Das maschinelle Lernen soll die Vogelstimmen erkennen, nicht die Aufnahmetechnik bewerten», sagt Gabriel Michau.
Dieser Lerneffekt ist auch bei technischer Infrastruktur wichtig: Auch bei den Maschinen müssen die Algorithmen die blossen Hintergrundgeräusche sowie die Einflüsse der Aufnahmetechnik ausschliessen, um die relevanten Geräusche zu erfassen. Für eine Anwendung in der Industrie ist es wichtig, dass das maschinelle Lernen die feinen Unterschiede zwischen den Geräuschen erkennen kann. Damit es für die Fachpersonen in der Praxis nützlich und vertrauenswürdig ist, darf es weder zu oft Alarm schlagen noch relevante Geräusche überhören.
«Mit unserer Forschung konnten wir aufzeigen, dass unser Ansatz des maschinellen Lernens die Anomalien unter den Geräuschen erkennt, und dass er so flexibel ist, dass man ihn für verschiedene Signale und verschiedene Aufgaben anwenden kann», schliesst Olga Fink. Ein wichtiges Merkmal ihrer Lernmethode ist, dass sie auch in der Lage ist, die Entwicklung der Klänge zu überwachen, sodass sie aus der Art und Weise, wie sich die Klänge im Laufe der Zeit entwickeln, Hinweise auf mögliche Fehler erkennen kann. Dies eröffnet mehrere interessante Anwendungsmöglichkeiten.
Dieser Artikel ist zunächst auf ETH-News erschienen.
Autor(in)
Florian
Meyer, ETH-News