Best Practice 18.12.2017, 08:50 Uhr

Maschinelles Lernen wird Standard

Das maschinelle Lernen ist aus diversen Bereichen schon nicht mehr wegzudenken. Die Systeme sortieren Werbenachrichten aus oder beantworten automatisch Anwenderfragen. Nun schicken sich die Computer an, dem Menschen noch mehr manuelle Geschäftstätigkeiten abzunehmen. Das Potenzial scheint unerschöpflich.
(Quelle: Shutterstock/Gorodenkoff)
Als Netflix 2013 «House of Cards» lancierte, entwickelte sich die Serie schnell zum meist heruntergeladenen Content des Unternehmens – ein Ergebnis, das die Verantwortlichen bei Netflix in keiner Weise überraschte. Sie durchforsteten einen riesigen Daten-Pool zu den Konsumgewohnheiten ihrer Abonnenten und stellten fest, dass «House of Cards» sehr gute Chancen hatte, sich zu einem Hit zu entwickeln, noch bevor sie die Serie einkauften.
Netflix hat sich bei diesem Entscheid nicht von der Intuition leiten lassen, sondern auf maschinelles Lernen (ML) gesetzt. Der Streamingdienstleister vertraute auf die Fähigkeit von Maschinen, mithilfe von Algorithmen selbstständig Muster in unstrukturierten Datenbeständen wie Bildern, Texten oder gesprochener Sprache zu erkennen, Vorhersagen zu treffen oder Daten zu klassifizieren, ohne explizit dafür programmiert zu sein. Die Möglichkeiten von maschinellem Lernen beschränken sich allerdings nicht darauf, den nächsten TV-Blockbuster zu identifizieren. Eine Reihe von Anwendungen, die heute als selbstverständlich gelten, basieren auf ML: Das Filtern von Spam etwa oder die künstlichen Stimmen, die mit uns aus dem Smartphone oder anderen digitalen Endgeräten sprechen.

Selbstlernende Algorithmen

Diese Beispiele sind zwar nützlich, aber nur einfache Vorboten im Hinblick auf das Potenzial von ML. Eine Vielzahl von Geschäftsprozessen wird heute von starren, softwarebasierten Regeln gesteuert. Dieser Ansatz ist jedoch von beschränktem Nutzen, wenn es um die Bewältigung komplexer Prozesse geht. Zudem verlangen diese Prozesse häufig die Intervention von Menschen für repetitive Aufgaben und manuelle Eingriffe. Rechnungen und Spesen auf ihre Richtigkeit zu prüfen, gehört ebenso dazu wie Dutzende oder Hunderte von Lebensläufe zu prüfen, um eine offene Stelle zu besetzen.
Selbstlernende Algorithmen können solche Aufgaben übernehmen und darüber hinaus Lösungen aufzeigen, die bisher verborgen blieben. Sie können das Recruiting verbessern, den Kundendienst personalisieren, Betrügereien aufdecken und die Qualitätskontrolle in der Fertigung übernehmen. Die Vielzahl an möglichen Anwendungsfällen und der damit verbundene Nutzen solcher Lösungen machen ML zu einer der zentralen Disziplinen im Bereich der künstlichen Intelligenz (KI). Daher erstaunt es nicht, dass eine grosse Mehrheit von Managern mehr technische Intelligenz im Geschäftsalltag begrüsst, wie eine Befragung der Harvard Business Review unter rund 1800 Führungskräften ergeben hat. Sie können sich freuen: Maschinelles Lernen ist nicht mehr nur ein Thema aus Scifi-Romanen, sondern reale Praxis in der heutigen Geschäftswelt.

Intelligenz für die Buchhaltung

In der Buchhaltung sind Lösungen, die maschinelles Lernen nutzen, aktuell in der Lage, Überweisungen aufgrund historischer Daten automatisch der richtigen Rechnung zuzuordnen. Dabei merkt sich die Lösung, welche Schritte der Bearbeiter nun unternimmt, um die Überweisung richtig zuzuordnen. Auf diese Weise lernen solche Lösungen und können durch einen zunehmenden Automatisierungsgrad Kosten senken.
Ein weites Feld für den Einsatz von ML lässt sich im Marketing erschliessen. Man denke nur an all die Datenströme, die den Vermarktungsorganisationen zur Verfügung stehen: POS-Transaktionen, Onlinekäufe, Klickraten (CTR), Browsing-Verhalten, Interaktionen in den sozialen Medien, Smartphone-Nutzung, Geolokalisierung und mehr. Mithilfe von maschinellem Lernen können Marketers diese Daten auswerten, um Kunden mit höherer Granularität zu kategorisieren und zu segmentieren oder Kampagnen aufzusetzen, die Kundenreaktionen genauer vorhersagen.
“Maschinelles Lernen ist nicht mehr Scifi, sondern reale Praxis in der heutigen Geschäftswelt„
Markus Noga, Head of Machine Learning, SAP

Sponsoring und Detailhandel

Ein zusätzlicher Anwendungsbereich im Marketing ist das Sponsoring. Marketingabteilungen müssen ihre finanziellen Engagements immer mehr mit soliden Angaben zum ROI unterlegen können. Hier kommen Lösungen auf ML-Basis zum Zug, die den Firmen helfen, den Einfluss ihrer Sponsoring-Massnahmen zu ermitteln. Dazu messen sie beispielsweise, wie oft und wie lange das Unternehmenslogo bei Live-Übertragungen einer Sportveranstaltung oder eines Musikfestivals auf dem Bildschirm zu sehen ist. Was bisher mühsam manuell ermittelt werden musste, übernehmen nun Algorithmen. Sie identifizieren quasi in Echtzeit die Grösse der Logos, die Position im Bild und die Dauer der Darstellung. In Verbindung mit Vergleichsdaten anderer Marken und definierten Kennzahlen lässt sich ermitteln, ob das Sponsoring für das Unternehmen lohnenswert ist.
“Im Handel können intelligente Systeme die Farbtrends des nächsten Sommers ermitteln und Kunden schon jetzt beraten„
Markus Noga, Head of Machine Learning, SAP
Weitere Einsatzmöglichkeiten von ML bieten sich im Personalwesen, sei es, um Stellen schneller mit den passenden Kandidaten zu besetzen oder um den Mitarbeitern mit Empfehlungen für die Weiterbildung und zum Aufbau von Expertise bei ihrer Karriereplanung behilflich zu sein. Ebenfalls im Blick haben die Entwicklungsteams den Detailhandel: Hier können intelligente Systeme die Farbtrends des Sommers ermitteln und der Kundschaft entsprechende Angebote unterbreiten.

Demokratisierungsschub

Angesichts der schier unbegrenzten Einsatzmöglichkeiten von maschinellem Lernen stellt sich die Frage, was der Markt derzeit tatsächlich zu bieten hat. An der Spitze der Pyramide befinden sich eigenständige ML-Produkte für dedizierte Anwendungsbereiche. Zusätzlich hält der Markt Plattformen bereit, die sich bestens als technische Grundlage eignen, um ML-Logik mithilfe von bereits trainierten Algorithmen in eigene Lösungen einzubauen. Unternehmen können diese Service-APIs erwerben und damit eigene Anwendungen «intelligent» machen.
Solche gebrauchsfertigen Services bescheren dem maschinellen Lernen einen  Demokratisierungsschub, vorausgesetzt, sie sind via Standardschnittstellen einfach zugänglich. Angesichts der Anwendungsbreite von Machine Learning wird ein «One size fits all»-Ansatz allerdings kaum jedes Bedürfnis abdecken können. Verfügbare Modelle für die Bilderkennung beispielsweise sind in der Lage, eine Vielzahl von Objekten – von Autos bis Menschen – zu kategorisieren. Wenn aber ein Autohändler auf visuelles Shopping setzen möchte, muss er dem Bilderkennungsservice beibringen, zwischen den einzelnen Automodellen zu unterscheiden. Dies ist möglich, indem er den Service mit spezifischen Daten «schult».
Auch das bietet der Markt – und zwar als intuitiven Prozess, ohne Fachkenntnisse in Data Science, ohne komplizierte Betriebsmittel und ohne teuren Investitionsaufwand. Massgeschneiderte Machine-Learning-Intelligenz ist kein Vorrecht von Weltkonzernen. Jedes Unternehmen kann bereits heute davon profitieren.
Der Roboter «Pepper» schickt SAPs Gäste in den richtigen Showroom

Kriterien für die Anwendung von Machine Learning

1. Das grösste Potenzial für maschinelles Lernen schlummert in der Automatisierung volumenstarker Aufgaben mit komplexen Algorithmen und grossen Mengen an unstrukturierten Daten.
2. Maschinelles Lernen funktioniert am besten bei spezifischen, klar definierten Aufgaben, bei denen der gewünschte Output und der relevante Input konkret benannt werden können.
3. Maschinelles Lernen erfordert grosse Datenmengen.Es braucht Beispiele in ausreichender Anzahl, damit die Maschine aussagekräftige Annäherungen an die gewünschten Entscheide lernen kann.
4. Die Daten, die als Lernbasis dienen, müssen wesentliche Unterschiede enthalten (zum Beispiel bei den Kundeneigenschaften), damit der Algorithmus seine Mission erfüllen kann.
Der Autor
Markus Noga, Head of Machine Learning, SAP, www.sap.ch


Das könnte Sie auch interessieren